

Performance and Life-Cycle Cost Benefits of Stone Matrix Asphalt

Fan Yin, Ph.D., P.E. National Center for Asphalt Technology

Acknowledgements

- National Asphalt Pavement Association (NAPA)
- Federal Highway Administration (FHWA)
- PI Dr. Randy West, NCAT
- The following state highway agencies (SHAs): Alabama, Colorado, Georgia, Illinois, Illinois Tollway Authority, Indiana, Kansas, Maryland, Michigan, Minnesota, Missouri, Pennsylvania, South Dakota, Utah, Virginia, and Wisconsin

Presentation Outline

- Background
- Research Objective
- Market Analysis
- Performance Analysis
- Life-cycle Cost Analysis (LCCA) Case Studies
- Conclusions

Background

- SMA: durable and rut-resistant gap-graded asphalt mix
 - Stone-on-stone contact to offer strength
 - Rich mortar binder to provide durability
- First introduced into the United States in early 1990s
- Commonly used as a premium asphalt mix to enhance field performance and extend life span of asphalt pavements and overlays
- Generally more expensive than dense-graded mixes containing polymermodified asphalt binders
- Higher cost offset by the increase in life expectancy

Laboratory Evaluation of SMA mixes

- Comparing the test results of SMA versus a control dense-graded mix, not necessarily using polymer modified asphalt binder
- Better rutting resistance due to stone-on-stone aggregate structure
- Better resistance to moisture damage due to thicker asphalt film between aggregate particles
- No consistent trends on stiffness and cracking resistance comparisons
- Reduced susceptibility to oxidative aging

Field Evaluation of SMA Pavements

- NCHRP Project D9-8, Performance of SMA Mixes in the United States
 - \circ 85 SMA pavement sections
 - \circ 2 to 6 years old
 - $\circ~$ Outstanding rutting and cracking performance
- Similar performance benefits reported by other studies
- Functional benefits
 - \circ Improved visibility
 - $\circ~$ Reduced splash and spray
 - \circ $\,$ Increased friction resistance $\,$
 - Noise reduction

Research Objective

 Quantify and compare the performance and life-cycle cost benefits of SMA versus <u>polymer-modified</u> Superpave dense-graded mixes used on <u>similar trafficked highways</u>

Market Analysis

 Survey of state asphalt pavement associations (SAPAs) identified at least 18 states that use SMA on a routine basis

Market Analysis

- Follow-up survey of SHAs
- Survey questions
 - Mix selection policy
 - Mix design specification
 - Bid item numbers
 - Cost and tonnage from 2011 to 2015
 - Field performance data

Mix Selection Policy

Mix Design Method

2011-2015 Tonnage

Written DocumentEngineer Decision

AASHTO R 46State MethodsAASHTO R 35

68,000 Tons

Highest tonnage 1. Maryland 2. Alabama 3. Utah

1,872,000 Tons

Weighted Bid Price (2011-2015)

- SMA consistently more expensive than dense-graded mixes
- Difference in weighted bid price varied from \$6 to \$31 per ton
- SMA higher bid price possibly due to
 - Higher asphalt contents
 - Requirement for more cubical and durable aggregates
 - \circ Inclusion of fibers as stabilizers
 - $\circ~$ No/reduced use of RAP and RAS
 - \circ Reduced plant versatility

Performance Analysis

- To compare the long-term field performance of SMA versus comparable Superpave dense-graded mixes
 - Equivalent roadway category
 - Equivalent pavement type
- Pavement management system (PMS) data of 407 SMA and 807 Superpave pavement sections
 - 2 states evaluate individual pavement distresses (rutting, cracking, etc.)
 - 7 states use composite condition indexes (distress index, surface rating, etc.)

Performance Analysis

- Network-level analysis approach
- S-shaped logistic performance prediction model used in most cases

Example: Michigan DOT Data

- Conduct distress survey by videotaping pavement surface
- Assign distress points based on distress type, extent, and severity
- Calculate distress index (DI) by combining all distress points
 - $\circ~$ A "snapshot" of pavement distress condition
 - DI = 0: distress-free condition
 - DI = 50: remaining service life of zero
 - DI develops following a logistic growth model

Example: Michigan DOT Data

SMA: 22 years

Superpave: 21 years

Example: Virginia DOT Data

- Conduct distress survey using an Automated Road Analyzer (ARAN)
- Determine load related distress rating (LDR) and non-load related distress rating (NDR) based on distress type, extent, and severity
- Calculate critical conditioning index (CCI) as Min. (LDR, NDR)
 - $\circ~$ A "snapshot" of overall pavement condition
 - CCI = 100: distress-free condition
 - \circ CCI = 0: completely failed condition
 - \circ CCI = 60: remaining service life of zero
 - CCI develops following a s-shaped logistic performance model

Example: Virginia DOT Data

SMA: 19 years

Superpave: 14 years

Summary – Flexible Pavements

Highway Agency	Performance Measure	Predicted Service Life (Years)		SMA Life
		SMA	Superpave	Extension (Years)
Alabama DOT	Pavement Condition Rating	16.2	16.6	-
Colorado DOT	Rutting Cracking	17.0	17.4	-
Georgia	PACES Rating	16.0*	11.0*	5.0
Maryland SHA (Interstate)	Rutting Cracking Index	24.8	26.9	-
Maryland SHA (Principal Arterial)	Rutting Cracking Index	32.2	24.0	8.2
Minnesota DOT	Ride Quality Index Surface Rating	16.6*	11.3*	5.3
Virginia DOT	Critical Condition Index	19.0	14.4	4.6

*Note: * PMS data from a limited number of pavement sections*

Summary – Composite Pavements

Highway Agency	Performance Measure	Predicted Service Life (Years)		SMA Life
		SMA	Superpave	Extension (Years)
Illinois Tollway	Overall Condition Rating Survey	13.5	9	4.5
Maryland SHA (Principal Arterial)	Rutting Cracking Index	21.8	19.6	2.2
Michigan DOT	Overall Distress Index	22.2	21.3	0.9
Pennsylvania DOT (Interstate)	Overall Pavement Index	21.1*	22.2	-
Pennsylvania DOT (Non-Interstate)	Overall Pavement Index	24.5*	11.0	13.5
Virginia DOT	Critical Condition Index	23.1	12.8	10.3

*Note: * PMS data from a limited number of pavement sections*

LCCA Case Studies

- To determine if the higher cost of SMA can be justified by the improved performance and extended service life
- Net present value (NPV)/equal uniform annual cost (EUAC) approach
 - \circ Cost information from Market Analysis
 - Performance information from Performance Analysis
 - Assumption of 2-inch thick asphalt overlay
 - Analysis period selected using SMA's service life
 - Discount rate selected using agency's current practice
 - Routine maintenance costs and user costs not considered

NPV/EUAC Approach

- Present value of the first overlay cost (PV₀)
- Future value of the replacement overlay cost (FV)
- Salvage value at the end of the analysis period (SV)
- Discount rate (r)

$$NPV = PV_0 + \sum FV_i * \left[\frac{1}{(1+r)^{n_i}}\right] + SV * \left[\frac{1}{(1+r)^{n_s}}\right]$$
$$EUAC = NPV * \left[\frac{r(1+r)^{n_s}}{(1+r)^{n_s}-1}\right]$$

Virginia DOT – Deterministic Approach

- SMA: \$114/ton, 23 years service life
- Superpave: \$89/ton, 13 years service life

Alternative 2: Superpave Mixture

Virginia DOT – Probabilistic Approach

- PV₀, FV, and r following normal distributions
- NPV probability distribution curves generated based on 1,000 Monte Carlo simulations

LCCA Case Study Summary

Level of Significance

No consistent conclusions for comparing the life-cycle cost benefits of SMA versus comparable Superpave mix

Conclusions

- Currently 18 SHAs use SMA on a routine basis
- SMA was \$6 to \$31/ton more expensive than Superpave mixes with polymer modified asphalt binders
- SMA generally had equivalent or better performance than Superpave mixes on similar trafficked highways; in cases where SMA had better performance, the life extension varied from 1 to 13 years among the states and varied for different pavement types
- The cost effectiveness of SMA versus Superpave mixes depends on the relative level of significance from increased cost versus extended service life

Thank you!

Any questions? Reach me at <u>f-yin@auburn.edu</u>

